نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، گروه مشاوره، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشجوی دکتری مشاوره، گروه مشاوره، دانشگاه محقق اردبیلی، اردبیل، ایران.

3 کارشناسی ارشد روان‌شناسی / آموزگار استثنایی، اداره کل آموزش‌وپرورش اردبیل، پارس‌آباد، ایران.

چکیده

هدف پژوهش حاضر بررسی ویژگی‌های روانسنجی پرسشنامه‌ی انگیزه‌های استفاده از هوش مصنوعی در دانشجویان بود. روش پژوهش حاضر توصیفی و از نوع مطالعات روانسنجی بود. جامعه‌ی آماری پژوهش را تمامی دانشجویان دانشگاه محقق اردبیلی در سال‌تحصیلی 1403-1402 تشکیل می‌دادند که از میان آنها با استفاده از روش نمونه‌گیری در دسترس 318 نفر (187 پسر و 131 دختر) به عنوان نمونه انتخاب شدند. برای جمع‌آوری داده‌ها از پرسشنامه‌ی انگیزه‌های استفاده از هوش مصنوعی یورت و کاسارجی (2024) و نگرش کلّی نسبت به هوش مصنوعی شپمن و رودوی (2020) استفاده شد. برای بررسی روایی پرسشنامه از روایی ملاکی (همزمان) با مقیاس نگرش کلّی نسبت به هوش مصنوعی و تحلیل عاملی تأییدی و برای بررسی پایایی پرسشنامه از روش همسانی درونی استفاده شد. نتایج تحلیل عاملی نشان داد که این پرسشنامه برازش مناسب داشته و در نتیجه از روایی مطلوبی برخوردار است (97/0=CFI، 95/0=NFI، 96/0=NNFI و 059/0=RMSEA). نتایج حاصل از ضریب همسانی درونی (ضریب آلفای کرونباخ) نشانگر پایایی خوب پرسشنامه بود. به طوری که ضریب آلفای کرونباخ برای عامل انتظار 87/0، برای عامل دستیابی 86/0، برای عامل سودمندی 89/0، برای عامل ارزش ذاتی/بهره 82/0 و برای عامل هزینه 72/0 به دست آمد. بنابراین، می‏توان گفت که پرسشنامه‌ی انگیزههای استفاده از هوش مصنوعی برای سنجش این سازه در نمونه‌های دانشجویان ایرانی از روایی و پایایی کافی برخوردار است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the Psychometric Properties of the Questionnaire of Artificial Intelligence Use Motives in University Students

نویسندگان [English]

  • Ali Sheykholreslami 1
  • saeed khakdal 2
  • Bahman Zardi gikloo 3

1 Professor, Department of Counseling, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran

2 Ph.D. Student of Counseling, Department of Counseling, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran

3 Master of Psychology / Exceptional Teacher, Ardabil General Directorate of Education, Parsabad, Iran.

چکیده [English]

The aim of this study was to investigating the psychometric properties of the Questionnaire of Artificial Intelligence Use Motives in University Students. The present research method was descriptive and the type of psychometric studies. The statistical population of this study consisted of all the students of University of Mohaghegh Ardabili, who were studying in the academic year 2023-2024, and 318 people (187 male and 131 female) were selected from among them using available sampling method. In order to collect information, the Questionnaire of Artificial Intelligence Use Motives Yurt & Kasarci (2024) and general attitudes towards Artificial Intelligence Schepman &Rodway (2020) Scale was used. To check the reliability of the questionnaire, the internal consistency method was used, and to check the validity of the questionnaire, criterion validity (simultaneous) with the scale of general attitude towards artificial intelligence and confirmatory factor analysis was used. The results of factor analysis showed that this questionnaire has a good fit and therefore has good validity (CFI=0/97, NFI=0/95, NNFI=0/96 and RMSEA=0/059). The results of the internal consistency coefficient (Cronbach's alpha coefficient) indicated the good reliability of the questionnaire, so that the Cronbach's alpha coefficient was 0/87 for the expectation factor, 0/86 for the attainment factor, 0/89 for the utility factor, and 0/82 for the intrinsic value/interest factor and 0/72 was obtained for the cost factor. Therefore, based on the findings of this research, it can be concluded that the questionnaire of artificial intelligence use motives has sufficient validity and reliability to measure this construct in Iranian samples.

کلیدواژه‌ها [English]

  • motives
  • artificial intelligence
  • expectancy
  • attainment
Ahmed, S., Khalil, M. I., Chowdhury, B., Haque, R., Senathirajah, A. R. b. S., & Omar Din, F. M. b. (2022). Motivators and barriers of artificial intelligent (AI) based teaching. Eurasian Journal of Educational Research, 100, 74–89. https://doi.org/10.14689/ejer.2022.100.006
Antonov, A. A. (2011). From artificial intelligence to human super-intelligence. Artificial Intelligence, 2(6), 3560.
Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior. Psychological Review, 64(6), 359–372. https://doi.org/10.1037/h0043445
Baek, T. H., & Kim, M. (2023). Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence. Telematics and Informatics, 83, 102030. https://doi.org/10.1016/j.tele.2023.102030
Bang, H., Kim, J., & Choi, D. (2018). Exploring the effects of ad-task relevance and ad salience on ad avoidance: The moderating role of internet use motivation. Computers in Human Behavior, 89, 70–78. https://doi.org/10.1016/j.chb.2018.07.027
Barron, K. E., & Hulleman, C. S. (2015). The expectancy-value-cost model of motivation. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., Vol. 8, pp. 503–509). Elsevier.
Becker, D. (2018). Possibilities to improve online mental health treatment: Recommendations for future research and developments. Future of Information and Communication Conference, Singapore.
Bringsjord, S. (2011). Psychometric artificial intelligence. Journal of Experimental & Theoretical Artificial Intelligence, 23(3), 271–277. https://doi.org/10.1080/0952813X.2010.502314
Chiu, T. K., Moorhouse, B. L., Chai, C. S., & Ismailov, M. (2023). Teacher support and student motivation to learn with Artificial Intelligence (AI) based chatbot. Interactive Learning Environments, 1–17. https://doi.org/10.1080/10494820.2023.2209614
Costley, K. (2014). The positive effects of technology on teaching and student learning. Education Resource Information Centre.
Crowe, D., LaPierre, M., & Kebritchi, M. (2017). Knowledge based artificial augmentation intelligence technology: Next step in academic instructional tools for distance learning. TechTrends, 61(5), 494–506. https://doi.org/10.1007/s11528-017-0210-4
Dobrev, D. (2012). A definition of artificial intelligence. arXiv preprint arXiv:1210.1568.
Eccles, J. S., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. (1983). Expectancies, values, and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motivation (pp. 75–146). W. H. Freeman.
Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53(1), 109–132. https://doi.org/10.1146/annurev.psych.53.100901.135153
Eighmey, J., & McCord, L. (1998). Adding value in the information age: Uses and gratifications of sites on the World Wide Web. Journal of Business Research, 41(3), 187–194. https://doi.org/10.1016/S0148-2963(97)00061-1
Florenthal, B. (2019). Young consumers’ motivational drivers of brand engagement behavior on social media sites: A synthesized U&G and TAM framework. Journal of Research in Interactive Marketing, 13(3), 351–391. https://doi.org/10.1108/JRIM-05-2018-0060
Ghorayeb, A., Comber, R., & Gooberman-Hill, R. (2021). Older adults’ perspectives of smart home technology: Are we developing the technology that older people want? *International Journal of Human-Computer Studies, 147*, 102571. https://doi.org/10.1016/j.ijhcs.2020.102571
Gill, K. S. (2016). Artificial super intelligence: Beyond rhetoric. AI & Society, 31(1), 137–143. https://doi.org/10.1007/s00146-016-0661-8
Gökçearslan, S., Tosun, C., & Erdemir, Z. G. (2024). Benefits, challenges, and methods of Artificial Intelligence (AI) chatbots in education: A systematic literature review. International Journal of Technology in Education (IJTE), 7(1), 19–39. https://doi.org/10.46328/ijte.600
Harry, A. (2023). Role of AI in education. Injuruty: Interdisciplinary Journal and Humanity, 2(3), 260–268.
Kahraman, H. T., Sagiroglu, S., & Colak, I. (2010). Development of adaptive and intelligent Web-based educational systems. Proceedings of the 4th International Conference on Applied Information and Communication Technology (pp. 1–5).
Kashive, N., Powale, L., & Kashive, K. (2021). Understanding user perception toward artificial intelligence (AI) enabled e-learning. International Journal of Information and Learning Technology, 38(1), 1–19. https://doi.org/10.1108/IJILT-05-2020-0090
Katz, E., Blumler, J. G., & Gurevitch, M. (1973). Uses and gratifications research. Public Opinion Quarterly, 37(4), 509–523. https://doi.org/10.1086/268109
Kaye, S.-A., Lewis, I., Forward, S., & Dellhomme, P. (2020). A priori acceptance of highly automated cars in Australia, France, and Sweden: A theoretically-informed investigation guided by the TPB and UTAUT. Accident Analysis & Prevention, 137, 105441. https://doi.org/10.1016/j.aap.2020.105441
Khasawneh, M. A. S., & Khasawneh, Y. J. A. (2023). The potentials of artificial intelligence in stimulating motivation and improving performance of undergraduates in foreign languages. Journal of Namibian Studies: History Politics Culture, 34, 7059–7077. https://doi.org/10.59670/jns.v34i.2937
Kim, S. E., Kim, H. L., & Lee, S. (2021). How event information is trusted and shared on social media: A uses and gratification perspective. Journal of Travel & Tourism Marketing, 38(5), 444–460. https://doi.org/10.1080/10548408.2021.1952146
Ko, H., Cho, C. H., & Roberts, M. S. (2005). Internet uses and gratifications: A structural equation model of interactive advertising. Journal of Advertising, 34(2), 57–70. https://doi.org/10.1080/00913367.2005.10639191
Krause, A. E., North, A. C., & Heritage, B. (2014). The uses and gratifications of using Facebook music listening applications. Computers in Human Behavior, 39, 71–77. https://doi.org/10.1016/j.chb.2014.06.021
Kuberkar, S., & Singhal, T. K. (2020). Factors influencing adoption intention of AI powered chatbot for public transport services within a smart city. International Journal of Emerging Technologies, 11(3), 948–958.
Kumar, D. (2021). Importance of artificial intelligence in education. NJESR, 2(5), 476–487.
Kwon, S. E., Kim, E., Sung, Y., & Yun Yoo, C. (2014). Brand followers: Consumer motivation and attitude towards brand communications on Twitter. International Journal of Advertising, 33(4), 657–680. https://doi.org/10.2501/IJA-33-4-657-680
Liu, C. (2017). International competitiveness and the fourth industrial revolution. Entrepreneurial Business and Economics Review, 5(4), 111–133. https://doi.org/10.15678/EBER.2017.050405
McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa… examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28–37. https://doi.org/10.1016/j.chb.2019.05.009
McLean, S., Read, G. J., Thompson, J., Baber, C., Stanton, N. A., & Salmon, P. M. (2021). The risks associated with artificial general intelligence: A systematic review. Journal of Experimental & Theoretical Artificial Intelligence, 33(1), 1–17. https://doi.org/10.1080/0952813X.2021.1964003
Mitchell, M. (2019). Artificial intelligence: A guide for thinking humans. Penguin Random House.
Murphy, K., Di Ruggiero, E., Upshur, R., Willison, D. J., Malhotra, N., Cai, J. C., Lui, V., & Gibson, J. (2021). Artificial intelligence for good health: A scoping review of the ethics literature. BMC Medical Ethics, 22(1), 1–17. https://doi.org/10.1186/s12910-021-00577-8
Naqvi, A. (2020). Artificial intelligence for audit, forensic accounting, and valuation: A strategic perspective. Wiley.
Omohundro, S. (2014). Autonomous technology and the greater human good. Journal of Experimental & Theoretical Artificial Intelligence, 26(3), 303–315. https://doi.org/10.1080/0952813X.2014.895111
Papacharissi, Z., & Rubin, A. M. (2000). Predictors of Internet use. Journal of Broadcasting & Electronic Media, 44(2), 175–196. https://doi.org/10.1207/s15506878jobem4402_2
Park, G., Yim, M. C., Chung, J., & Lee, S. (2022). Effect of AI chatbot empathy and identity disclosure on willingness to donate: The mediation of humanness and social presence. Behaviour & Information Technology, 1–13. https://doi.org/10.1080/0144929X.2022.2105746
Phua, J., Jin, S. V., & Kim, J. J. (2017). Uses and gratifications of social networking sites for bridging and bonding social capital: A comparison of Facebook, Twitter, Instagram, and Snapchat. Computers in Human Behavior, 72, 115–122. https://doi.org/10.1016/j.chb.2017.02.041
Pokrivcakova, S. (2019). Preparing teachers for the application of AI-powered technologies in foreign language education. Journal of Language and Cultural Education, 7(3), 135–153. https://doi.org/10.2478/jolace-2019-0025
Rosenzweig, E. Q., Wigfield, A., Eccles, J. S., Renninger, K. A., & Hidi, S. E. (2019). Expectancy-value theory and its relevance for student motivation and learning. In The Cambridge handbook of motivation and learning (pp. 617–644). Cambridge University Press.
Ruggiero, T. E. (2000). Uses and gratifications theory in the 21st century. Mass Communication & Society, 3(1), 3–37. https://doi.org/10.1207/S15327825MCS0301_02
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. https://doi.org/10.1006/ceps.1999.1020
Salas-Pilco, S. Z., & Yang, Y. (2022). Artificial intelligence applications in Latin American higher education: A systematic review. International Journal of Educational Technology in Higher Education, 19(1), 19–21. https://doi.org/10.1186/s41239-022-00326-w
Salmon, P. M., Carden, T., & Hancock, P. A. (2021). Putting the humanity into inhuman systems: How human factors and ergonomics can be used to manage the risks associated with artificial general intelligence. Human Factors and Ergonomics in Manufacturing & Service Industries, 31(2), 223–236. https://doi.org/10.1002/hfm.20883
Sutton, H. (2019). Minimize online cheating through proctoring, consequences. Recruiting & Retaining Adult Learners, 21(5), 1–5.
Valenzuela, J., Nieto, A., & Saiz, C. (2011). Critical thinking motivational scale: A contribution to the study of the relationship between critical thinking and motivation. Electronic Journal of Research in Educational Psychology, 9(2), 823–848.
Wang, F., King, R. B., Chai, C. S., et al. (2023). University students’ intentions to learn artificial intelligence: The roles of supportive environments and expectancy–value beliefs. International Journal of Educational Technology in Higher Education, 20(1), 51. https://doi.org/10.1186/s41239-023-00417-2
Wardat, Y., Belbase, S., & Tairab, H. (2022). Mathematics teachers’ perceptions of trends in international mathematics and science study (TIMSS)-related practices in Abu Dhabi Emirate schools. Sustainability, 14(9), 5436. https://doi.org/10.3390/su14095436
Wigfield, A. (1994). Expectancy-value theory of achievement motivation: A developmental perspective. Educational Psychology Review, 6(1), 49–78. https://doi.org/10.1007/BF02209024
Wigfield, A., & Eccles, J. S. (1992). The development of achievement task values: A theoretical analysis. Developmental Review, 12(3), 265–310. https://doi.org/10.1016/0273-2297(92)90011-P
Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 68–81. https://doi.org/10.1006/ceps.1999.1015
Yang, X., Hesami, M. D., Nazemipool, E., Bahadoran, A., Al-Bahrani, M., & Azizi, B. (2022). Fabrication of CuCo2S4 yolk-shell spheres embedded with S-scheme V2O5-deposited on wrinkled g-C3N4 for effective promotion of levofloxacin photodegradation. Separation and Purification Technology, 301, 122005.
Yilmaz, R., & Yilmaz, F. G. K. (2023). The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 4, 100147. https://doi.org/10.1016/j.caeai.2023.100147
Yurt, E., & Kasarci, I. (2024). A questionnaire of artificial intelligence use motives: A contribution to investigating the connection between AI and motivation. International Journal of Technology in Education (IJTE), 7(2), 308–325. https://doi.org/10.46328/ijte.725
Zawacki-Richter, O., Marín, V. I., Bond, M., et al. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0