نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد روانشناسی دانشگاه آزاد اسلامی واحد ابهر

2 کارشناسی ارشد روانشناسی دانشگاه الزهرا

3 کارشناسی ارشد راهنمایی و مشاوره دانشگاه دانشگاه آزاد واحد تهران شمال

4 کارشناسی ارشد علوم تربیتی دانشگاه آزاد واحد تهران مرکز

5 استادیار مرکز تحقیقات علوم رفتاری، دانشگاه علوم پزشکی بقیه الله

چکیده

چکیده
زمینه: تحلیل داده های شبکه ای می‏تواند در کاربست روش‏های روانسنجی که ماهیت شبکه‏ای دارند (مانند تحلیل سوالات)، استفاده شود. هدف: هدف این پژوهش معرفی تحلیل داده‏های شبکه‏ای به عنوان یک تکنیک روانسنجی-ریاضیاتی، و استفاده از آن در فرآیند تحلیل سوالات پرسشنامه، می‏باشد. برای نمونه، نتایج تحلیل سوال از این روش با شاخص‏های روانسنجی مرسوم مقایسه می‏شود. روش: داده‏ها، از اجرای پرسشنامه رغبت شغلی بدست آمده که مبتنی بر نظریه شخصیتی- شغلی هالند ساخته شده است. این پرسشنامه روی 1000 نفر از دانش آموزان دبیرستانی استان تهران اجرا شده است. دانش آموزان بر اساس نمونه‏گیری خوشه‏ای و با اخذ مجوز لازم از اداره آموزش و پرورش استان تهران، انتخاب شدند. این داده‏ها با هدف تحلیل سوالات پرسشنامه رغبت‏سنج و قبل از مرحله‏ی هنجاریابی پرسشنامه اتخاذ شدند. یافته‏ها: معرفی تکنیک تحلیل داده‏های شبکه‏ای و الگوریتم‏های مربوط به آن و استفاده از آنها به منظور فرآیند تحلیل سوال، یکی از دستاوردهای این مقاله است. مقایسه‏ی نتایج بدست‏آمده از بکار بردن تکنیک تحلیل داده‏های شبکه‏ای و روش‏های مرسوم روانسنجی (مانند ضریب پایایی، ضریب تمیز، مقدار آگاهی بر اساس نظریه سوال پاسخ و تحلیل عاملی سوالات) نشاندهنده‏ی انطباق و هماهنگی آنها در تحلیل سوالات پرسشنامه رغبت سنج است. به بیان دیگر، سوالاتی که با استفاده از شیوه‏های مرسوم تحلیل سوال، مناسب و یا نامناسب تشخیص داده می‏شوند، همان سوالاتی هستند که در گراف ترسیم شده از طریق تکنیک شبکه‏ای مناسب و یا نامناسب اند. بحث و نتیجه‏گیری: نتایج بدست آمده از این پژوهش نشان می‏دهد که می‏توان از تکنیک تحلیل داده‏های شبکه‏ای به خوبی در حوزه‏ی تحلیل سوالات چه به صورت مستقل و چه در کنار شیوه‏های مرسوم تحلیل سوال استفاده نمود. مزایای کاربرد چنین تکنیکی علاوه و بر سادگی فهم، تفسیر و شناسایی سوالات مناسب و نامناسب، نقشه‏ی ارتباطی بین سوالات است که می‏تواند در تحلیل ابعاد زیر بنایی سوالات، مانند تکنیک مقیاس‏گذاری چند بعدی استفاده شود و تمام نتایج تحلیلی را به صورت یکپارچه و یکجا ارائه دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Study of applying network data analysis in item analysis

نویسندگان [English]

  • Ladan Araghi 1
  • Azadeh Taheri 2
  • zahra joz ramazani 3
  • afrooz abas pour 4
  • Mohammad Hossien Zarghami 5

1 Abhar Azad University

2 alzahra university

3 Tehran shomal Azad university

4 Tehran Azad university

5 baghiat allah university

چکیده [English]

Abstract: The foundation of network data analysis in psychometrics rests on particular theory, special ontological assumptions and particular methodology. Therefore it is possible to call network analysis as an independent paradigm with given techniques for data gathering and data analysis. This study introduces the analysis of network data as a psychometric-mathematical technique, and its use in questionnaire item analysis. To achieve this goal, data gathered from implementation of a self-made questionnaire on 1000 Tehran's high school students. The questionnaire was made based on occupational-personality Holland theory. Researchers analyzed questionnaire’s items according to conventional methods (classical test theory, item response theory and factor analysis) and proposed method (network data analysis). Comparison of the results shows that a complete conformity between conventional methods final outputs and the outputs from network data analysis. Therefore, psychometricians can use network data analysis independently or alongside conventional methods to analyze questionnaires items. Advantages of such a method are simplicity, accuracy, being virtually and integrity.

کلیدواژه‌ها [English]

  • Network data analysis
  • item analysis
  • psychometrical properties
  • visualization
  • item map
چلبی، مسعود (1375)، تحلیل شبکه در جامعه شناسی، فصلنامه علوم اجتماعی، شماره 3.
ضرغامی، محمد حسین؛ دلاور، علی؛ فلسفی نژاد، محمد رضا؛ درتاج، فریبرز؛ و خوش سخن مظفر، اکرم (1393)، آزمون کاربرد تحلیل داده‏های شبکه‏ای در مطالعات همبودی، اندازه گیری تربیتی، شماره 16.
ضرغامی، محمد حسین؛ قائمی، فرحناز؛ قائمی، فاطمه (1392)، برآورد استعداد افراد در فعال‏سازی ژن‏ها، ژنتیک در هزاره سوم، دوره 11، شماره 1.
Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64, 1089–1108.
Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163-177.
Carrington, P. J., Scott, J., & Wasserman, S. (Eds.). (2005). Models and methods in social network analysis (Vol. 28). Cambridge university press.
Coble, J. B., & Hines, J. W. (2008, October). Prognostic algorithm categorization with PHM challenge application. In Prognostics and Health Management, 2008. PHM 2008. International Conference on (pp. 1-11). IEEE.
Eades, P. (1984). A heuristics for graph drawing. Congressus numerantium, 42, 146-160.
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2011).qgraph: Network representations of relationships in data. R package version 0.4.10. 
Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75-174.
Gansner, E. R., Koren, Y., & North, S. (2005, January). Graph drawing by stress majorization. In Graph Drawing (pp. 239-250). Springer Berlin Heidelberg.
Green, S. J., & Owen, L. B. (1987). U.S. Patent No. 4,634,315. Washington, DC: U.S. Patent and Trademark Office.
Fruchterman, T. & Reingold, E. (1991). Graph drawing by force-directed placement. Software - Pract. Exp. 21, 1129?1164.
Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information processing letters, 31(1), 7-15.
Marsden, P. V. (1990). Network data and measurement. Annual review of sociology, 16(1), 435-463.
Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert systems with applications, 36(1), 2-17.
Newman, M. E. (2006). Modularity and community structure in networks.Proceedings of the National Academy of Sciences, 103(23), 8577-8582.
Ortmanns, S., Ney, H., & Aubert, X. (1997). A word graph algorithm for large vocabulary continuous speech recognition. Computer Speech & Language,11(1), 43-72.
Prediger, D. J. (1982). Dimensions underlying Holland’s hexagon: Missing link between interestsand occupations? Journal of Vocational Behavior, 21, 259-287.
Tal, E. (2013). Old and new problems in philosophy of measurement. Philosophy Compass, 8(12), 1159-1173.
Quinn, N., & Breuer, M. A. (1979). A forced directed component placement procedure for printed circuit boards. Circuits and Systems, IEEE Transactions on, 26(6), 377-388.
Schroeder, D. H., Haier, R. J., & Tang, C. Y. (2012). Regional gray matter correlates of vocational interests. BMC research notes, 5(1), 242.
Shahookar, K., & Mazumder, P. (1991). VLSI cell placement techniques. ACM Computing Surveys (CSUR), 23(2), 143-220.
Sturrock, K., & Rocha, J. (2000). A multidimensional scaling stress evaluation table. Field methods, 12(1), 49-60.
Wan, Z., & Li, Z. L. (1997). A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. Geoscience and Remote Sensing, IEEE Transactions on, 35(4), 980-996.
West, D. B. (2001). Introduction to graph theory (Vol. 2). Upper Saddle River: Prentice hall.