نوع مقاله : مقاله پژوهشی

نویسندگان

1 - عضو هیئت علمی دانشگاه تربیت دبیر شهید رجایی

2 عضو هیئت علمی دانشگاه تربیت دبیر شهید رجایی

3 - دانشجوی کارشناسی‌ارشد آموزش ریاضی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

چکیده

هندسه یکی از مهم‌ترین شاخه‌های ریاضی است که با استدلال و تفکر دانش‌آموزان در ارتباط می‌باشد. براساس نظریه ون‌هیلی یک دانش‌آموز برای دستیابی به استدلال موفق در هندسه بایستی پنج سطح متوالی و سلسله مراتبی مجزای تفکرهندسی را طی کند. تفکرهندسی شامل حل مسئله و دست‌کاری تصاویر فضایی است. هدف تحقیق حاضر ساخت آزمونی پایا و معتبر جهت اندازه‌گیری سطح تفکرهندسی دانش‌آموزان براساس نظریه ون‌هیلی است. روش پژوهش پیمایشی بوده و ابزار این پژوهش با توجه به مطالعه ادبیات پیشین و تحقیقات انجام شده، تهیه گردید. این ابزار، آزمونی مشتمل بر 21 سؤال براساس نظریه ون‌هیلی است که سطح تفکر هندسی دانش‌آموزان را مشخص می‌کند. مفاهیم هندسی دخیل در ساخت این آزمون شامل زاویه، مثلث، مربع، مستطیل، لوزی، متوازی‌الاضلاع، ذوزنقه و دایره هستند. جامعه آماری شامل دانش‌آموزان پایه‌های چهارم و پنجم مقطع ابتدایی و دانش‌آموزان سه پایه مقطع راهنمائی شهر تهران است. با استفاده از روش نمونه‌گیری خوشه‌ای 507 نفر از دانش‌آموزان شامل 162 نفر پایه چهارم، 174 نفر پایه پنجم، 85 نفر پایه ششم، 47 نفر پایه هفتم و 39 نفر پایه هشتم در شهر تهران انتخاب و آزمون روی آن‌ها اجرا شد. روش‌های به‌کار رفته شامل اعتبار محتوایی و سازه (تحلیل عاملی)، تحلیل گویه‌ها شامل ضریب دشواری، ضریب تمیز و مقدار آلفای کرونباخ برای هماهنگی درونی سؤالات است. پنج عامل به کمک تحلیل عاملی شناسایی شد که عبارتند از: ویژگی اشکال از بُعد زاویه؛ چرخش؛ ویژگی اشکال از بُعد زاویه‌ قائمه؛ ویژگی اشکال و زوایا؛ و ارتباط اشکال با یکدیگر.
 

کلیدواژه‌ها

عنوان مقاله [English]

Creating Valid and Reliable Geometric Thinking Test Based on the First Three Levels of Van Hiele Theory

نویسندگان [English]

  • elahe Aminifar 1
  • bahram Saleh Sedghpour( 2
  • n Bagheri 3

1

2

3

چکیده [English]

Geometry is one of the important subjects in mathematics which is related to students’ reasoning and thinking. Based on van Hiele theory a student must pass through five sequential and hierarchical discrete levelsof geometric thinking to achieve a successful reasoning in geometry. Geometric thinking consists of problem solving and manipulating spatial images. The aim of the present study was to create a reliable and valid test to assess students’ level of geometric thinking based on van Hiele theory. The survey research was used and a test has been made by reviewing recent research and literature. The test includes 21 questions related to the levels of geometric thinking based on van Hiele theory. The geometry concepts in creating this test comprise: angle, triangle, square, rectangle, rhombus, parallelogram, trapezoidal and circle. Students who were studying in grades 4-8 in elementary and middle schools in 2009-2010 in Tehran were considered as a statistical population. By cluster sampling method 507 students were chosen. The test was taken from the sample consists of 162 students from grade four, 174 students from grade five, 85 students from grade six, 47 students from grade seven, and 39 students from grade eight. Content validity, construct validity (factor analysis), and item analysis including difficulty index, discrimination index, and Cronbach’s alpha for internal consistency of the test items were used to get the results. Five factors were realized by factor analysis as follow: properties of shapes from angle dimension, rotation, properties of shapes from right angle dimension, properties of shapes and angles, and the relationship between shapes.
 
 

کلیدواژه‌ها [English]

  • Keywords: van Hiele theory
  • levels of geometric thinking
  • elementary and middle school students
منابع فارسی
دلاور، علی و زهراکار، کیانوش. (1387). سنجش و اندازه‌گیری در روان‌شناسی، مشاوره و علوم‌تربیتی، نشر ارسباران، تهران.
ریحانی، ابراهیم. (1384). معرفی نظریه پیاژه و فن هیلی در مورد یادگیری هندسه، رشد آموزش ریاضی، شماره 80، صص 22-12، دفتر انتشارات کمک آموزشی، وزارت آموزش و پرورش.
غلام‌آزاد، سهیلا. (1379). رویکردهای نوین آموزش هندسه، رشد آموزش ریاضی، شماره 60-59، صفحات 23-18، دفتر انتشارات کمک آموزشی، وزارت آموزش و پرورش.
کاپلان ام.، ساکوزو د.، مترجم: دلاور علی، درتاج فریبرز، فرخی نورعلی (1388). روان‌آزمایی، نشر ارسباران، تهران.
نجفی، لادن. (1379). هندسه درس شیرینی است اما.... ، چهارمین کنفرانس آموزش ریاضی ایران.
 
 
منابع لاتین
Battista M. J. (2007). The Development of Geometric and Spatial Thinking, In F. k. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning, Vol. 2, pp. 843-908, Charlotte, NC: Information Age.
Edrogan T., Akkaya R. and Çelebi Akkaya S.(2009). The Effect of the van Hiele Model Based Instruction on the Creative Thinking Levels of 6th Grade Primary School Students, Journal of Educational Sciences: Theory & Practice, Vol.9, No.1, pp.181-194.
Goos M. and Spencer T. (2003). Properties of Shape, Mathematics-Making Waves. Proceeding of the Nineteenth Biennial Conference of the Australian Association of Mathematics Teachers. pp. 424-434, Inc. Adelaide: AAMT Inc.
Handscomb K.(2005). Image-Based Reasoning in Geometry, MSc Thesis, Faculty of Education, Simon Fraser University.
Sibley T. Q. (1998). The Geometric Viewpoint: A Survey of Geometries, Reading, Massachusetts: Addison-Wesley.
Thompson E. (2006). Euclid, the van Hiele Levels, and the Geometer’s Sketchpad, MSc Thesis, Florida Atlantic University.
Usiskin Z. (1982). “Van Hiele Levels and Achievement in Secondary School Geometry”, University of Chicago.
Yıldız C., Aydın M., and Köğcĕ D. (2009). Comparing the Old and New 6th - 8th Grade Mathematics Curricula in Terms of van Hiele Understanding Levels for Geometry,