Ackerman, T. (1989). Unidimensional IRT calibration of compensatory and
noncompensatory multidimensional items. Applied Psychological Measurement, 13 (2), 113-127.
Ackerman, T. (1996). Graphical representation of multidmensional item response theory analyses. Applied Psychological Measurement, 20, 311–329.
Adams, R. J., Wilson, M., & Wang, W. C. (1997). The multidimensional random coefficients multinomial logit model. Applied psychological measurement, 21 (1), 1-23.
Anderson,L.W.,&Krathwohl,D.R. (2001).A Taxonomy for learning,teaching,and assessing: A Revision of Bloom's Taxonomy of educational objectives.NewYork:Longman.
Ansley, T. N., & Forsyth, R. A. (1985). An examination of the characteristics of unidimensional IRT parameter estimates derived from two-dimensional data. Applied Psychological Measurement, 9, 37-48.
Bacci, S., Pandolfi, S., & Pennoni, F. (2014). A comparison of some criteria for states selection in the latent Markov model for longitudinal data. Advances in Data Analysis and Classification, 8 (2), 125-145.
Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72 (2), 141-157.
Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27 (6), 395-414.
Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64 (2), 153-168.
Bragg, L. A., Vale, C., Herbert, S., Loong, E., Widjaja, W., Williams, G., & Mousley, J. (2013, January). Promoting awareness of reasoning in the primary mathematics classroom. In MAV 2013: Mathematics of the planet earth: Proceedings of the MAV 50th Annual Conference 2013 (pp. 23-30). Mathematical Association of Victoria.
Brooks, S., Gelman, A., Jones, G., & Meng, X. L. (Eds.). (2011). Handbook of Markov Chain Monte Carlo. CRC press.
Carroll, J. B. (1945). The effect of difficulty and chance success on correlations between items or between tests. Psychometrika, 10 (1), 1-19.
Chen, W. H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22 (3), 265-289.
Christensen, K. B., Bjorner, J. B., Kreiner, S., & Petersen, J. H. (2002). Testing unidimensionality in polytomous Rasch models. Psychometrika, 67 (4), 563-574.
De Champlain, A. F. (1996). The effect of multidimensionality on IRT true-score equating for subgroups of examinees. Journal of Educational Measurement, 33, 181-201.
De Champlain, A., & Gessaroli, M. E. (1998). Assessing the dimensionality of item response matrices with small sample sizes and short test lengths. Applied Measurement in Education, 11 (3), 231-253
Drasgow, F., & Lissak, R. I. (1983). Modified parallel analysis: A procedure for examining the latent dimensionality of dichotomously scored item responses. Journal of Applied psychology, 68 (3), 363-373.
Dubravka Svetina & Roy Levy (2014) A Framework for Dimensionality Assessment for Multidimensional Item Response Models, Educational Assessment, 19:1, 35-57.
Frederiksen, N. (Ed.). (1990). Diagnostic Monitoring of Skill and Knowledge Acquisition. Psychology Press.
Fraser, C., & McDonald, R. P. (1988). NOHARM II: A FORTRAN program for fitting unidimensional and multidimensional normal ogive models of latent trait theory. The University of New England, Armidale, Australia. : University of New England, Centre for Behavioral Studies.
Geramipour, M., & Shahmirzadi, N. (2018). Application and Comparison of Multidimensional Latent Class Item Response Theory on Clustering Items in Comprehension Tests. The Journal of AsiaTEFL, 15 (2), 479-490.
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61 (2), 215-231.
Gu, Z. (2011). Maximizing the potential of multiple-choice items for Cognitive Diagnostic Assessment (Doctoral dissertation, University of Toronto).
Hambleton, R. K., & Rovinelli, R. J. (1986). Assessing the dimensionality of a set of test items. Applied psychological measurement, 10 (3), 287-302.
Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications (Vol. 7): Springer.
Hayton J. C., Allen D. G., and Scarpello V. (2004). Factor Retention Decisions in Exploratory Factor Analysis: A Tutorial on Parallel Analysis. Organizational Research Methods. 7 (2): 191–205
Heinen, T. (1996). Latent class and discrete latent trait models: Similarities and differences. Sage Publications, Inc.
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30 (2), 179-185.
Hulin, C. L., Drasgow, F., & Parsons, C. K. (1983). Item response theory: Application to psychological measurement. Homewood, IL: Irwin.
Kim, H. R., & Stout, W. F. (1994). A new index for assessing the amount of multidimensionality and/or simple structure present in test data. In annual meeting of the American Educational Research Association, New Orleans.
Koretz, D. (2008). Measuring Up: What Educational Testing Really Tells Us. Cambridge, MA: Harvard University Press. pp. 7-14.
Langeheine, R., & Rost, J. (Eds.). (2013). Latent trait and latent class models. Springer Science & Business Media.
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Houghton Mifflin Co.
Lord, F. M. (1980). Applications of item response theory to practical testing problems:Mahwah, NJ: Erlbaum.
Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental test scores. (pp.359-382). Reading, MA: Addison-Wesley.
Masters, G. N. (1985). A comparison of latent trait and latent class analyses of Likert-type data. Psychometrika, 50 (1), 69-82.
Nandakumar, R. (1994). Assessing essential dimensionality of set of items. Journal of Educational Measurement,31:1.
Payne, DA (2003). Applied Educational Assessment (2nd ed.). US: Wads Worth.
Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results and implications. Journal of Educational and Behavioral Statistics, 4 (3), 207-230.
Reckase, M. (2009). Multidimensional item response theory (Vol. 150). New York: Springer.
Rost, J. (1988). Rating scale analysis with latent class models. Psychometrika, 53 (3), 327-348.
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14 (3), 271-282.
Roznowski, M., Tucker, L. R., & Humphreys, L. G. (1991). Three approaches to determining the dimensionality of binary items. Applied Psychological Measurement, 15 (2), 109-127.
Santrock, J. W. (2004). Educational Psychology. New York: McGraw-Hill.
Shealy, R., & Stout, W. (1993). A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF. Psychometrika, 58 (2), 159-194.
Sireci, S. G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet‐based tests. Journal of Educational Measurement, 28 (3), 237-247.
Slavin, R. E., & Davis, N. (2006). Educational psychology: Theory and practice.
Stout, W. F. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psychometrika, 52 (4), 589-617.
Sympson, J. B. (1978). A model for testing with multidimensional items. Paper presented at the Proceedings of the 1977 Computerized Adaptive Testing Conference, Minneapolis: University of Minnesota, Department of Psychology, Psychometric Methods Program.
Takane, Y., & De Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52 (3), 393-408.
Traub, R. E., & Lam, Y. R. (1985). Latent structure and item sampling models for testing. Annual review of psychology, 36 (1), 19-48.
Walker, C. M., & Beretvas, S. N. (2003). Comparing multidimensional and unidimensional proficiency classifications: Multidimensional IRT as a diagnostic aid. Journal of Educational Measurement, 40 (3), 255-275.
Way, W. D., Ansley, T. N., & Forsyth, R. A. (1988). The comparative effects of compensatory and noncompensatory two-dimensional data on unidimensional IRT estimates. Applied Psychological Measurement, 12 (3), 239-252.
Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45 (4), 479-494.
Wilson, D., Wood, R., & Gibbons, R. (1987). TESTFACT [Computer program]. Mooresville IN: Scientific Software.
Van der Linden, W. J., & Hambleton, R. K. (1996). Handbook of modern item response theory: Springer.
von Davier, A. A., & Wilson, C. (2008). Investigating the population sensitivity assumption of item response theory true-score equating across two subgroups of examinees and two test formats. Applied Psychological Measurement, 32 (1), 11-26.
Yen, W. M. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of educational measurement, 30 (3), 187-214.
Zhang, J. (2004). Comparison of unidimensional and multidimensional approaches to IRT parameter estimation. ETS Research Report Series, 2004 (2), i-40.
Zwick, R. (1987). Assessing the dimensionality of NAEP reading data. Journal of Educational Measurement, 24 (4), 293-308.