احمدپور، فاطمه و فدائی، محمدرضا و رفیع پور، ابوالفضل. (1396). لزوم بازاندیشی در محتوای کتابهای درسی ریاضی پایه هفتم و هشتم از منظر استدلال و اثبات. مطالعات برنامه درسی، 12(46)، 84-59.
دری، محمد مهدی و رفیع پور، ابوالفضلودری،فاطمه. (1396). ارزیابی ظرفیت کتابهای درسی ریاضی دوره متوسطه اول در ترویج یادگیری عمیق مفاهیم. فصلنامه مطالعات برنامه درسی ایران، 14(52)، 1-30.
حیدری، فاطمه الزهرا، اصغری، نسیم. (1398). بررسی درک رویهای و ساختاری دانشآموزان دوره متوسطه اول در عبارتهای جبری، نشریه علمی فناوری آموزش، 13(3)، 671-660.
یافتیان، نرگس و بشیر، آرزو. (1395). تحلیل فصل جبر و معادله کتاب ریاضی پایه هفتم بر اساس پنج الگوی مختلف، نشریه علمی فناوری آموزش، 11(2)، 33-21.
Bednarz, N, Kieran, C & Lee, Lesley.)1996. (Approaches to Algebra: Perspectives for Research and Teaching. Dordrecht: Kluwer Academic Publishers
Booth, L. R (1984). Algebra: Children's strategies and errors: A report of the strategies and errors in secondary mathematics project. Windsor, UK: NFER-NELSON.
Collis, K F (1974). "Cognitive development and mathematics learning", paper prepared for Psychology of Mathematics Education Workshop, Centre for Science Education, Chelsea College, London, 28 June
Foster, D. (2007). Making meaning in algebra: Examining students’ understandings and misconceptions. In A. H. Schoenfeld (Ed.), Assessing mathematical proficiency (pp. 163-176). New York: Cambridge University Press.
Gray, E. & Tall, D. (1994). "Duality, Ambiguity, and Flexibility: A "Proceptual" View of Simple Arithmetic", Journal for Research in Mathematics Education, 25(2) p. 116–40
Gray, E. M. & Tall, D. O. (2001). Relationships between embodied objects and symbolic procepts: An explanatory theory of success and failure in mathematics. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of 25th annual conference of the International Group for the Psychology of Mathematics Education, Vol. 3, 65–72. Utrecht: The Netherlands.
Gray & Tall (1992). Success and failure in mathematics: Procept and procedure. In Workshop on Mathematics Education and Computers, (pp. 209-21), Taipei: Taipei National University
Heidari, F. & Asghary, N. (2021). Students’ perception of letters as specific unknown and variable: The Case of Iran. Journal for Educators, Teachers and Trainers, 11(1), 79-92. doi: 10.47750/jett.2020.11.01.008
Hiebert, J. & Lefevre, P. (1986). Conceptual and procedural knowledge in math- ematics: An introduc- tory analysis. In J. Hiebert (Ed.), Conceptual and Pro- cedural Knowledge: The Case of Mathematics (pp. 1 27). Hillsdale, NJ, USA: Lawrence Erlbaum.
Hoch, M. & Dreyfus, T. (2006). Structure sense versus manipulation skills: An unexpected result. In J. Novotn¶a, H. Moraov¶a, M. Kr¶atk¶a, & N. Stehl¶³kov¶a (Eds.), Proceedings 30th Conference of the International Group for the Psy- chology of Mathematics Education, Prague, Vol. 3 (pp. 305{312).
Kaput, J. 1. (2008). What is algebra? What is algebraic reasoning? In J. 1. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5-17). New York, NY: Routledge
Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning. Reston, V A: NCTM.
Küchemann, D. (1981). ‘Algebra’, in K. Hart (ed.), Children's Understanding of Mathematics: 11–16, Murray, London, pp. 102–119.
Linchevski, L., & Herscovics, N. (1994). Cognitive obstacles in pre-algebra In J. P. da Ponte & J. F. Matos (Eds.), Proceedings of the 18th International Conference for the Psychology of Mathematics Education (Vol. 3, 176-183). Lisbon, Porgugal: PME.
Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40(2), 173-196.
Matz, M. (1980). Towards a computational theory of algebraic competence. Journal of Mathematical Behavior, 3, 93-166.
National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.
Radford, L. (1997). On Psychology, Historical Epistemology and the Teaching of Mathematics: Towards a Socio-Cultural History of Mathematics, Forthe Learning of Mathematics, 17 (1), 26-33
Radford, L. (2001). The historical origins of algebraic thinking. In R. Sutherland, T. Rojano, A. Bell & R. Lins (Eds.), Perspectives on School Algebra (pp. 13-63). Dordrecht: Kluwer.
Rystedt, E. (2015). Encountering algebraic letters, expressions and equations: A study of small group discussions in a Grade 6 classroom. (Licentiate thesis). Gothenburg: University of Gothenburg.
Schoenfeld, A. H., & Arcavi, A. (1988). On the meaning of variable. Mathematics Teacher, 81, 420-427.
Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on process and objects as different sides of the same coin. Educational Studies in Mathematics, 1-36.
Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification? The case of algebra. Educational Studies in Mathematics, 26(26), 191–228.
Star, J. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404-411.
Trigueros, M. & Ursini, S. (2003). First-year undergraduates’ difficulties in working with different uses of variable. In Selden, A., Dubinsky, E., Harel, G., & Hitt, F. Eds. Research in Collegiate Mathematics Education. V. Providence, RI: AMS/MAA. p. 1-29
Van Amerom, B.A. (2003). Focusing on informal strategies when linking arithmetic to early algebra. Educational Studies in Mathematics, 54, pp. 63-75.
Warren, E. (2003). The role of arithmetic structure in the transition from arithmetic to algebra. Mathematics Education Research Journal, 15(2), 122-137.
Wheeler, D. (1996). Backwards and Forward: Reflection On Different Approaches to Algebra.